Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Chiral polyoxygenated cyclohexanes are valuable constituents of biologically relevant products. Herein, we report a protocol for the direct access to these scaffolds via site‐ and enantioselective non‐directed oxidation of cyclohexyl‐3,5‐mesodiethers using aqueous H₂O₂. Structural shaping of a highly reactive chiral Mn‐oxo species, achieved through the combination of a sterically encumbered ligand and a bulky carboxylic acid, promotes a precise fit of the substrate within the catalyst pocket, which translates into exceptional enantioselectivity (up to >99% ee). Computational studies reveal that C─H oxidation proceeds via an initial hydrogen atom transfer, followed by electron transfer, leading to the formation of a chiral cationic intermediate. The resulting desymmetrized 3‐methoxycyclohexanone products serve as valuable intermediates for the synthesis of bioactive cores, as they can undergo orthogonal chemical modifications to enable further structural diversification.more » « less
-
High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron( iv )–tosylimido complexes [Fe IV (NTs)(MePy 2 tacn)](OTf) 2 ( 1(IV)NTs ) and [Fe IV (NTs)(Me 2 (CHPy 2 )tacn)](OTf) 2 ( 2(IV)NTs ), (MePy 2 tacn = N -methyl- N , N -bis(2-picolyl)-1,4,7-triazacyclononane, and Me 2 (CHPy 2 )tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)NTs and 2(IV)NTs are rare examples of octahedral iron( iv )–imido complexes and are isoelectronic analogues of the recently described iron( iv )–oxo complexes [Fe IV (O)(L)] 2+ (L = MePy 2 tacn and Me 2 (CHPy 2 )tacn, respectively). 1(IV)NTs and 2(IV)NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1 H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [Fe III (HNTs)(L)] 2+ , 1(III)–NHTs (L = MePy 2 tacn) and 2(III)–NHTs (L = Me 2 (CHPy 2 )tacn) have been isolated after the decay of 1(IV)NTs and 2(IV)NTs in solution, spectroscopically characterized, and the molecular structure of [Fe III (HNTs)(MePy 2 tacn)](SbF 6 ) 2 determined by single crystal X-ray diffraction. Reaction of 1(IV)NTs and 2(IV)NTs with different p -substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)NTs and 2(IV)NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)NTs and 2(IV)NTs with hydrocarbons containing weak C–H bonds results in the formation of 1(III)–NHTs and 2(III)–NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.more » « less
An official website of the United States government
